Посещений:
Development of antibodies to human embryonic stem cell antigens BMC Developmental Biology 2005, | |
Using antibodies to specific protein antigens is the method of choice to assign and identify cell lineage through simultaneous analysis of surface molecules and intracellular markers. Embryonic stem cell research can be benefited from using antibodies specific to transcriptional factors/markers that contribute to the "stemness" phenotype or critical for cell lineage.
In this report, we have developed and validated antibodies (either monoclonal or polyclonal) specific to human embryonic stem cell antigens and early differentiation transcriptional factors/markers that are critical for cell differentiation into definite lineage.
These antibodies enable stem cell biologists to conveniently identify stem cell characteristics and to quantitatively assess differentiation.
Рис.1. | Western blot analysis for Gt ? hOct3/4 (A), Gt ? hNanog (B) and Ms ? hSOX2 (C) in NTERA-2 cell lysate, Ms ? hE-Cadherin (D) in MCF-7 cell lysate, Ms ? hCD9 (E) in PBMC lysate and Ms ? hPDX-1(F) in ?-TC-6 cell lysate Рис.2. | Undifferentiated human ES cells (A, B, and C) and differentiated EBs (D, E and F) were analyzed using antibodies to indicated molecular markers Рис.3. | Human embryonic stem cells stained with anti-CD9 (A), anti-E-Cadherin (B), and anti-PODXL (C) and antigen expression detected by a flow cytometer Рис.4. | Differentiated EBs were analyzed by either immunocytochemistry or RT-PCR to the indicated molecular markers Табл.1 Summary list of antibody verification by western blot. Табл.2 Summary of antibodies detection in ES and EB samples. |
Две функции определяют своловые клетки. Во-первых, они самообновляются и т.о. способны размножаться, чтобы генерировать дополнительные стволовые клетки. Во-вторых они способны дифференцироваться с различные клетки предшественники, которые предетерминированы к дальнейшему созреванию в соответствии с клональной специфичностью. Используются молекулярные маркеры, чтобы проспективно идентифицировать различные популяции стволовых клеток. Хотя функциональное значение многих из этих маркеров остается неизвестным, их уникальный паттерн экспрессии и время экспрессии представляет собой пригодный инструмент для дентификации и изоляции стволовых клеток.
Embryonic stem cells (ESC), происходящие из внутренней клеточной массы пре-имплантационных эмбрионов, распознаются как самая ранняя популяция стволовых клеток [1,2]. Эта плюрипотентная популяция может дифференцироваться почти во все соматические ткани, включая зардышевые клетки. В случае ESC человека они могут дифференцироваться в некоторые и внеэмбриональные производные. Подобно мышиным ESC, человеческие ES могут поддерживаться и размножаться на мышиных питающих фибробластах в течение длительного периода на среде, содержащией basic fibroblast growth factor (bFGF) [3]. Экспрессия генов недиффиренцированными ES клетками человека изучена на разных ES клеточных линиях с помощью разнообразных техник. Сюда входит и сравнение с базами данных, reverse transcriptase-polymerase chain реакция, сфокусированые микромассивы кДНК и иммуногистохимия. Список молекул, представленных известными ES-специфическими или -экспрессируемыми генами и кандидатами, которые могут служить маркерами для ESCs человека и могут также вносить вклад в "stemness" фенотип, известен [3-11]. Напр., плюрипотентные ESC могут быть охарактеризованы высоким уровнем экспрессии Oct3/4 (POU доменовым, class 5, transcription factor 1, Pou5f1) и Nanog, которые являются членами POU доменовых и гомообоксных транскрипционных факторов, соотв. Критические количества экспрессии Oct3/4 и Nanog необходимы для поддержания плюрипотентности стволовых клеток и оба эти маркера подавляются при дифференцировке клеток in vitro и in vivo [4-9]. Антитела к Oct3/4, которые перекрестно реагируют с Oct 3/4 человека, широко используются для мониторинга присутсвия недифференцированных ESC.
Ни один одиночный маркер. однако, недостаточен или уникален для идентификации ESCs. Oct3/4 , напр., экспрессируется зародышевыми клетками и может экспрессироваться специфическими популяциями позднее в развитии. Сходным образом, Nanog, как было установлено, экспрессируется и в др. тканях. Однако, было отмечено, что хотя и нет отдельного маркера, имеется достаточное созвездие позитивных и негативных маркеров. которые в сочетании позволяют уверенно определять состояние ESC cкультуры и которые в комбинации с поверхностными маркерами могут использоватья для проспективной сортировки ESC.
Мы клонировали ряд генов, кандидатов в маркеры. Мы экспрессировали также рекомбинантные белки и создали панель моноклональных или поликлональных антител к этим белкам-антигенам эмбрионгальных стволовых клеток человека. Используя эти антитела мы подтвердили специфичность и избирательность этих антител на некоторые линии ESC и подтвердили их пригодность в качестве маркеров стволовых клеток. Полученные результаты подтвердили паттерн и время экспрессии этих клеточных маркеров на белковом уровне, тогда как предыдущие данные сообщали об экспрессии на уровне генов.
Results and discussion Characterization of undifferentiated human ES cells and differentiated EBs by antibodies All monoclonal antibodies were initially selected for their abilities to recognize recombinant proteins in direct ELISAs. A subset were also tested by Western Blot analysis using recombinant proteins and cell lysate to confirm binding to a single epitope. The best clone was later screened for its applications for immunocytochemistry and flow cytometry using various cell lines. Human peripheral blood platelets were used for screening mouse anti-human CD9 antibody. MCF-7 cells were used for screening mouse anti-human E-Cadherin and PODXL (podocalyxin-like) antibodies. MG-63 cells were used for screening mouse anti-human GATA1 (GATA binding protein 1) antibody. Beta-TC6 cells were used for screening for mouse anti-human/mouse PDX-1 (pancreatic duodenal homeobox-1) antibody. NTERA-2 cells were used for screening mouse anti-human Oct3/4 and SOX2 (sex-determining region Y-box 2) antibodies. All polyclonal antibodies were affinity-purified using recombinant proteins and validated by direct ELISAs and Western. Caco-2 cells were used for validation of goat anti-human GATA6 antibody and NTERA-2 cells were used for validation of goat anti-human Nanog and anti-human Oct3/4 antibodies (Summarized in Table 1).
After antibodies were validated in direct ELISAs, Western blot or cell lines (Fig. 1 and data not shown), they were used to examine the expression of individual molecules in undifferentiated human ES cells and differentiated EBs. When examined by immunohistochemistry, high level of expressions of Oct3/4, SOX2, E-Cadherin, PODXL and Nanog were observed in undifferentiated human ES cells (Fig. 2A, 2B and 2C). DPPA5 (developmental pluripotency associated 5) expression was also observed in undifferentiated human ES cells (data not shown). We noted that a subset of the proteins used were membrane bound proteins. To test if any of the antibodies generated could recognize an extracellular epitope and thus be used for live cell sorting, we repeated staining of live cells as previously described. The CD9, E-Cadherin and PODXL antibodies recognized an extracellular epitope and their ability to select cells by FACS was confirmed (Fig. 3). Minimal or no expressions of Oct3/4, E-Cadherin, PODXL and Nanog were detected in the differentiated EBs (Fig. 2D, 2E and 2F). However, SOX2 expression, which is observed in neural progenitor cells, is persistent in subsets of EBs.
Suspension culture with FGF withdrawal is known to induce differentiation of ES cells to all three germ layer precursors [12]. The differentiation status of the EB used here was detected to contain all germ cell markers by RT-PCR (Fig. 4). In order to examine how more antibodies can be used for characterization of early differentiation events from human ES cells, we examined the expressions of endodermal markers, SOX17, GATA6 and PDX-1, and mesodermal markers, Brachyury and GATA1, in the undifferentiated human ES cells and differentiated EBs. Expressions of SOX17, GATA6, PDX-1, Brachyury and GATA1 were not detected in undifferentiated human ES cells (data not shown). In contrast to the undifferentiated ES cells, subpopulations of SOX17-, GATA6-, Brachyury- and GATA1-positive cells were observed (Fig 4). These results suggest that both endodermal and mesodermal precursors exist in EBs with FGF withdrawal for 8 days. However, no PDX-1-positive cells were seen in EBs differentiated with the same treatment (data not shown).
Examination of cross-reactivity of antibodies on mouse ES and differentiated cells We have also examined the cross-reactivities of these antibodies to mouse ES cells using mouse D3 ES cell line and mouse fetal endodermal tissue. Cross-reactivity to mouse of goat anti-Oct3/4, goat anti-PDX-1, goat anti-SOX17 and mouse anti-SOX2 was detected. Minimal cross-reactivity to mouse, measured by 10% intensity to human by higher than control cells, was observed in mouse anti-CD9 and mouse anti-E-cadherin antibodies. Goat anti-Nanog and mouse anti-PODXL antibodies appear to be human-specific as well (data not shown). The subtypes of monoclonal antibodies were also identified in the best clones. These results are summarized in Table 2.
Conclusion The expression patterns detected using antibodies developed in our facility are consistent with data reported using reverse transcriptase-polymerase chain reaction or cDNA microarrays. Moreover several of the monoclonal antibodies have differing heavy chain subunits allowing double labeling using subtype specific markers to be performed.
In summary, we have developed a useful collection of antibodies that would be useful for identification of stem cell characteristics and assessment of differentiation. Several additional antibodies to the molecules that have been identified as potential cell lineage markers [13] are currently under development using the same approach.
|