Посещений:
Oligodendrocyte wars
Nature Reviews Neuroscience V.7. № 1. P. 11-18 (2006) | |||
1. Altman, J. Proliferation and migration of undifferentiated precursor cells in the rat during
postnatal gliogenesis. Exp. Neurol. 16, 263–278 (1966).
2. Choi, B. H., Kim, R. C. & Lapham, L. W. Do radial glia give rise to both astroglial and oligodendroglial cells? Dev. Brain Res. 8, 119–130 (1983). 3. Choi, B. H. & Kim, R. C. Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J. Neuroimmunol. 8, 215–235 (1985). 4. Hirano, M. & Goldman, J. E. Gliogenesis in the rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J. Neurosci. Res. 21, 155–167 (1988). 5. Warf, B. C., Fok-Seang, J. & Miller, R. H. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci. 11, 2477–2488 (1991). 6. Pringle, N. P. & Richardson, W. D. A singularity of PDGF α-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525–533 (1993). 7. Noll, E. & Miller, R. H. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 118, 563–573 (1993). 8. Yu, W.-P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994). 9. Timsit, S. et al. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. 15, 1012–1024 (1995). 10. Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329 (2000). 11. Takebayashi, H. et al. Dynamic expression of basic helix–loop–helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 99, 143–148 (2000). 12. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron 25, 331–343 (2000). 13. Rowitch, D. H. Glial specification in the vertebrate neural tube. Nature Rev. Neurosci. 5, 409–419 (2004). 14. Tekki-Kessaris, N. et al. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128, 2545–2554 (2001). 1 5. Spassky, N. et al. Sonic hedgehog-dependent emergence of oligodendrocytes in the elencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFR&alpa; signaling. Development 128, 4993–5004 (2001). 16. Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the chick embryo: the entopeduncular area. Development 128, 1757–1769 (2001). 17. Jessell, T. M. Neuronal specification in the spinal cord; inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2001). 18. Cai, J. et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45, 41–53 (2005). (Describes studies with Nkx6.1/Nkx6.2 compound knockout mice, showing sonic hedgehogindependent production of oligodendrocyte precursors (OLPs) in the dorsal spinal cord. 19. Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005). (Like reference 18, this describes studies with Nkx6-null mice that demonstrate production of oligodendrocyte precursors in the dorsal spinal cord and hindbrain, and provides evidence for the involvement of BMPs in dorsal specification events. Vallstedt et al. also show that the role of the transcription factor Nkx2.2 differs between spinal cord and brainstem.) 20. Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959 (2005). (This article from our own laboratory provides independent evidence, by Cre-lox fate mapping in transgenic mice, for dorsal production of OLPs (and astrocytes). It also shows that specification of the dorsal subset of OLPs is hedgehog-independent in culture but depends on FGF signalling. 21. Kessaris, N. et al. Competition among oligodendrocyte sub-populations in the forebrain and elimination of an early embryonic lineage. Nature Neurosci. (in the press). Describes experiments that used a series of Cre mouse lines to show that OLPs originate in both ventral and dorsal forebrain territories. Kessaris et al. also killed ventral and dorsal populations separately by targeted expression of Diphtheria toxin A chain, and showed that the different regional populations are able to substitute functionally for one another.) 22. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998) 23. Spassky, N. et al. Single or multiple oligodendroglial lineages: a controversy. Glia 29, 143–148 (2000). (References 23 and 24 set out the contemporary arguments for and against multiple ventral and dorsal origins of oligodendrocytes versus a restricted ventral origin. These articles epitomize the ‘wars’ described in the current review.) 24. Richardson, W. D. et al. Oligodendrocyte lineage and the motor neuron connection. Glia 12, 136–142 (2000). 25. Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl Acad. Sci. USA 95, 3996–4001 (1998). 26. Liu, Y. & Rao, M. Oligodendrocytes, GRPs and MNOPs. Trends Neurosci. 26, 410–412 (2003). (Provides a discussion of the current debate about glial restricted precursors versus neuron–oligodendrocyte precursors.) 27. Rowitch, D. H., Lu, Q. R., Kessaris, N. & Richardson, W. D. An ‘oligarchy’ rules neural development. Trends Neurosci. 25, 417–422 (2002). 28. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/ oligodendrocyte lineage connection. Cell 109, 75–86 (2002). 29. Takebayashi, H. et al. The basic helix–loop–helix factor Olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol. 12, 1157–1163 (2002). 30. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002). 31. Calver, A. R. et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20, 869–882 (1998). 32. van Heyningen, P., Calver, A. R. & Richardson, W. D. Control of progenitor cell number by mitogen supply and demand. Curr. Biol. 11, 232–241 (2001). 33. Fogarty, M. Fate mapping the mouse neural tube by Cre-loxP transgenesis. Thesis, Univ. London (2005). 34. Ivanova, A. et al. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse. J. Neurosci. Res. 73, 581–592 (2003). 35. Sun, T., Pringle, N. P., Hardy, A. P., Richardson, W. D. & Smith, H. K. Pax6 influences the time and site of origin of glial precursors in the ventral neural tube. Mol. Cell. Neurosci. 12, 228–239 (1998). 36. Xu, X. et al. Selective expression of Nkx-2.2 transcription factor in chicken oligodendrocyte progenitors and implications for the embryonic origin of oligodendrocytes. Mol. Cell. Neurosci. 16, 740–753 (2000). 37. Soula, C. et al. Distinct sites of origin of oligodendrocytes and somatic motor neurons in the chick spinal cord; oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development 128, 1369–1379 (2001). 38. Zhou, Q., Choi, G. & Anderson, D. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001). (This pioneering article was the first to show a functional role for Nkx2.2 in oligodendrocyte development.) 39. Fu, H. et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129, 681–693 (2002). 40. Agius, E. et al. Converse control of oligodendrocyte and astrocyte lineage development by sonic hedgehog in the chick spinal cord. Dev. Biol. 270, 308–321 (2004). 41. Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723–2733 (2001).(Provides evidence that, in the mouse spinal cord, Nkx2.2 has an essential role in oligodendrocyte maturation, but not in initial lineage specification.) 42. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002). 43. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001). 44. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001). 45. Marshall, C. A. & Goldman, J. E. Subpallial Dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J. Neurosci. 22, 9821–9830 (2002). 46. Yung, S. Y. et al. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc. Natl Acad. Sci. USA 99, 16273–16278 (2002). 47. Levison, S. W. & Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212 (1993). 48. Luskin, M. B. & McDermott, K. Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11, 211–226 (1994). 49. Levison, S. W. & Goldman, J. E. Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res. 48, 83–94 (1997). 50. Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol. 156, 418–429 (1999). 51. Levison, S. W., Young, G. M. & Goldman, J. E. Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J. Neurosci. Res. 57, 435–446 (1999). 52. Chandran, S. et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130, 6599–6609 (2004). 53. Kessaris, N., Jamen, F., Rubin, L. & Richardson, W. D. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131, 1289–1298 (2004). 54. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996). 55. Grinspan, J. B. et al. Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J. Neurobiol. 43, 1–17 (2000). 56. Mekki-Dauriac, S., Agius, E., Kan, P. & Cochard, P. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129, 5117–5130 (2002). 57. Shimizu, T. et al. Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev.Biol. 282, 397–410 (2005). 58. Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001). 59. Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001). 60. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002). 61. Richardson, W. D., Pringle, N. P., Yu, W.-P. & Hall, A. C. Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev. Neurosci. 19, 54–64 (1997). 62. Cameron-Curry, P. & Le Douarin, N. M. Oligodendrocyte precursors originate from both the dorsal and the ventral parts of the spinal cord. Neuron 15, 1299–1310 (1995). 63. Pringle, N. P., Guthrie, S., Lumsden, A. & Richardson, W. D. Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20, 883–893 (1998). 64. Fu, H. et al. Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cells. J. Comp. Neurol. 456, 237–244 (2003). (Provides persuasive evidence that the postnatal ependymal layer that surrounds the lumen of the postnatal spinal cord is derived exclusively from neuroepithelial cells in the ventral (Nkx6.1-expressing) part of the embryonic spinal cord. The results of Cre-lox fate mapping (see reference 20) support this conclusion, which raises interesting questions about the cell fate potential of neural stem cells in the adult. 65. Bunge, R. Glial cells and the central myelin sheath. Physiol. Rev. 48, 197–251 (1968). 66. Bjartmar, C., Hildebrand, C. & Loinder, K.Morphological heterogeneity of rat oligodendrocytes:electron microscopic studies on serial sections. Glia 11, 235–244 (1994). 67. Butt, A. M., Ibrahim, M. & Berry, M. The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior medullary velum of neonatal rats. J. Neurocytol. 27, 327–338 (1997). 68. Butt, A. M., Colquhoun, K., Tutton, M. & Berry, M. Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J. Neurocytol. 23, 469–485 (1994). 69. Kleopa, K. A., Orthmann, J. L., Enriquez, A., Paul, D. L. & Scherer, S. S. Unique distributions of the gap junction proteins connexin29, connexin32 and connexin47 in oligodendrocytes. Glia 47, 346–357 (2004). 70. Fanarraga, M. L., Griffiths, I. R., Zhao, M.,Duncan, I. D. Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J. Comp. Neurol. 399, 94–100 (1998). 71. Le Bras, B. et al. Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage. Int. J. Dev. Biol. 49, 209–220 (2005). | Предшественники олигодендроцитов впервые появляются в ограниченной вентральной области эмбриональной хорды, после чего они мигрируют в латеральном и дорсальном направлениях. Позже вторичный источник олигодендроцитов возникает в дорсальной части хорды. В норме предшественники олигодендроцитов, происходящие из вентральной области, конкурируют и подавляют своих «дорсальных соперников». Имеются также вентральные и дорсальные источники олигодендроцитов в переднем мозге, однако в этом случае преимущество имеют как раз дорсальные предшественники, а предшественники, происходящие из вентральной части, элиминируются во время постнатального развития. Каким образом происходит конкуренция между разными популяциями и каков результат такого соревнования? Действительно ли олигодендроциты, имеющие разное эмбриональное происхождение, значительно отличаются друг от друга по своим функциям? Именно на эти вопросы и попытались ответить авторы в своем обзоре.
Происхождение олигодендроцитов активно обсуждается уже в течение многих лет. Некоторые лаборатории, включая лабораторию авторов статьи, придерживаются мнения о происхождении олигодендроцитов из вентральной нервной трубки, другие исследователи считают, что их происхождение носит разнообразный и множественный характер. Опубликованная по этой теме литература крайне противоречива. Новые методы исследования in vivo вероятно разрешат эту проблему. Как это часто случается, ответ может оказаться намного сложнее ожидаемого. До 1990-х годов считали, что олигодендроциты, вероятнее всего, происходят из всех частей эмбриональной вентрикулярной зоны (ventricular zone -VZ) ( REF. 1). Это казалось вполне вероятным, поскольку зрелые олигодендроциты были обнаружены во всех областях ЦНС взрослого организма без явных преимуществ по своему расположению вдоль дорсо-вентральной и переднее-заней осей. Имелись также некоторые указания о том, что радиальная глия, которая широко представлена в развивающейся ЦНС, может дифференцироваться в олигодендроциты в конце нейрогенеза (2-4). Это также свидетельствовало в пользу происхождения этих клеток из нескольких источников.
|
|
Box 2 | Do all roads lead to Rome? Can cells that are born of progenitors in different parts of the embryo — under the influence of different positional signals and expressing different sets of patterning genes — ever converge on precisely the same phenotypic endpoint? Would we expect oligodendrocytes that are specified by sonic hedgehog (SHH) in the ventral neural tube to be identical to oligodendrocytes that are specified by different signals (for example, fibroblast growth factor (FGF)) in the dorsal neural tube? Different classes of neuron are derived from different parts of the neural tube, so perhaps it would not be surprising if the glial products also differed. But what types of difference might we expect? The morphology of oligodendrocytes varies according to the axons that they myelinate65,66. Those that ensheath large-diameter axons have a large cell body that lies close to the axon and they synthesize only a single internode’s worth of myelin66,67. Other oligodendrocytes make many internodes — often more than 30 — on small-bore axons68. There are also molecular differences between oligodendrocytes on large- versus small-bore axons — for example, in their gap junction proteins (connexins)69. It is not known whether these are intrinsic differences or phenotypic variations of a single, plastic cell type. When oligodendrocyte precursors are purified from rodent optic nerve (which contains uniformly small-diameter axons) and transplanted into the ventral spinal cord (mixed large- and small-diameter axons), the grafted cells myelinate both large and small axons in the host70. This result is indicative of phenotypic plasticity; however, it is also possible that the optic nerve contains a mixture of oligodendrocyte precursor subtypes but that the large-bore variety normally fail to find suitable axonal partners and lie dormant in the nerve. The general idea that there might be different subclasses of oligodendrocyte derived from different precursor subtypes (for example, platelet-derived growth factor (PDGF)-dependent and -independent lineages15) is an area of active debate71. Regardless of whether there are different subtypes of oligodendrocyte, it seems possible that there might be intrinsically different subtypes of astrocyte. Various functions have been ascribed to astrocytes, such as the induction of endothelial cells to form tight junctions, thereby creating the blood–brain barrier, and the buffering of extracellular neurotransmitter concentrations, providing trophic support for neurons or oligodendrocytes. It remains to be seen whether these diverse functions are fulfilled by a single multi-tasking cell or multiple cell types, perhaps derived from different neurogenic domains. |